Sequences and Series – Convergence Tests, Power Series, Taylor Series & Fourier Series | Engineering Mathematics Notes for University & GATE

ENGINEERING MATHEMATICS NOTES – SEQUENCES AND SERIES (Gate and University Exam Focused)

Sequences and series notes  Engineering mathematics sequences  GATE maths series convergence  Ratio test and root test  Integral test for convergence  Power series notes  Taylor series notes  Fourier series 2π periodic functions  University exam maths notes  Convergence of sequences

(Convergence • Tests • Power Series • Taylor Series • Fourier Series)


1. SEQUENCES

1.1 Definition

A sequence is a function whose domain is the set of positive integers.

a1,a2,a3,,an,

Examples:

an=1n,an=(1)n,an=n+12n

1.2 Convergence of a Sequence

A sequence 

{an}\{a_n\} converges to LL if:

limnan=L

If such L does not exist → divergent.


1.3 Standard Convergent Sequences

  • 1n0\frac{1}{n} \to 0

  • 1np0\frac{1}{n^p} \to 0, p>0

  • (1+1n)ne(1+\frac1n)^n \to e

  • nn1\sqrt[n]{n} \to 1


1.4 Divergent Sequences

  • n,n2,nn, n^2, \sqrt{n}

  • (1)n(-1)^n oscillates → divergent

  • sinn\sin n has no limit → divergent


1.5 Monotone Convergence Theorem

If a sequence is:

  • monotonic increasing, and

  • bounded above

→ It must converge.


2. SERIES

A series is the sum of a sequence:

n=1an

The partial sum:

SN=n=1Nan

Series converges if:

limNSN=S

3. CONVERGENCE OF SERIES (GENERAL RESULTS)


3.1 Necessary Condition

If series converges:

limnan=0

If this limit ≠ 0 → series diverges immediately.


3.2 Geometric Series

arn={a1rr<1divergesr1

Examples:

  • 1+12+14+=21+\frac12+\frac14+\cdots = 2

  • 2+1+12+=42+1+\frac12+\cdots = 4


3.3 Harmonic Series

1n=\sum \frac{1}{n} = \infty

divergent, even though terms → 0.


3.4 p-Series

1np​
  • convergent if p > 1

  • divergent if p1p \le 1


4. SERIES WITH NON-NEGATIVE TERMS

(GATE IMPORTANT SECTION)


4.1 Comparison Test

Let 0anbn0 \le a_n \le b_n

  • If bn\sum b_n converges → an\sum a_n converges

  • If an\sum a_n diverges → bn\sum b_n diverges

4.2 Limit Comparison Test

L=limnanbnL = \lim_{n\to\infty} \frac{a_n}{b_n}
  • If 0<L<0<L<\infty, both converge or diverge together.


4.3 Ratio Test

L=limnan+1anL = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}
L Result
(L < 1) Convergent
(L > 1) Divergent
(L = 1) Inconclusive

4.4 Root Test

L=limnann

Same decision table as ratio test.


4.5 Integral Test

If:

  • an=f(n),

  • f(x)f(x) is positive, decreasing, continuous on [1,)[1,\infty)

Then:

1an converges     1f(x)dx converges\sum_1^\infty a_n \text{ converges } \iff \int_1^\infty f(x)\,dx \text{ converges}


Example (Integral Test)

Test convergence of:

n=11n(lnn)2​

Compare integral:

dxx(lnx)2

Let u=lnxu = \ln x:

1u2du

Convergent → series convergent.


5. POWER SERIES

5.1 Definition

A power series centered at a:

n=0cn(xa)n


5.2 Radius of Convergence (R)

Use ratio test:

R=1limcn+1/cn∣​

5.3 Interval of Convergence

(aR,a+R)

Test endpoints separately.


5.4 Standard Power Series

ex=n=0xnn!e^x = \sum_{n=0}^\infty \frac{x^n}{n!} sinx=n=0(1)nx2n+1(2n+1)!\sin x = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!} cosx=n=0(1)nx2n(2n)!\cos x = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!} 11x=xn,  x<1

6. TAYLOR SERIES

6.1 Taylor Series Expansion

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+

Examples

1. Expand 

exe^x at x=0x=0

ex=1+x+x22!+x33!+

6.2 Maclaurin Series (a = 0)

Special case of Taylor series.


6.3 Error Term (Lagrange Form)

Rn(x)=f(n+1)(ξ)(n+1)!(xa)n+1

Used for truncation error estimation.


7. FOURIER SERIES


7.1 Periodic Function

Function f(x)f(x) with period satisfies:

f(x+2π)=f(x)


7.2 Fourier Series of f(x)

f(x)=a0+n=1(ancosnx+bnsinnx)f(x) = a_0 + \sum_{n=1}^\infty (a_n \cos nx + b_n \sin nx)

Where:

a0=12πππf(x)dxa_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\, dx
an=1πππf(x)cos(nx)dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx)\, dx
bn=1πππf(x)sin(nx)dx

7.3 EVEN & ODD FUNCTIONS

Important shortcuts:

If f(x)f(x) is even:

  • All bn=0b_n = 0

  • Only cosine terms appear.

If f(x)f(x) is odd:

  • All an=0a_n = 0

  • Only sine terms appear.


7.4 Standard Fourier Series Examples

Square Wave (Odd Function)

f(x)={10<x<π1π<x<0f(x)= \begin{cases} 1 & 0<x<\pi\\ -1 & -\pi < x < 0 \end{cases} f(x)=4π(sinx+sin3x3+sin5x5+)

Sawtooth Wave

f(x)=x,π<x<πf(x)=x,\quad -\pi<x<\pi
f(x)=2n=1(1)nnsin(nx)

8. GATE EXAM SHORTCUTS

✔ Ratio and Root test are fastest for exponential-type terms

✔ For p-series always check p > 1

✔ Power series radius = ratio test on coefficients

✔ Fourier series: always check even/odd first

✔ Taylor series: memorize expansions of 

ex,sinx,cosx,(1+x)ne^x, \sin x, \cos x, (1+x)^n

9. COMMON MISTAKES

❌ Assuming convergence because terms → 0
❌ Ignoring endpoint tests in power series
❌ Forgetting that integral test requires positive decreasing functions
❌ Applying ratio test to alternating series (use alternating test instead)


10. LAST-MINUTE REVISION NOTES

  • Sequence converges if limit exists

  • Series converges if partial sums converge

  • p-series convergent if p>1

  • Ratio test: L<1 converge

  • Root test: same rule

  • Power series: radius from ratio test

  • Taylor expansion: derivatives at point

  • Fourier series: compute (a_0, a_n, b_n)


SEO KEYWORDS

  • Sequences and series notes

  • Engineering mathematics sequences

  • GATE maths series convergence

  • Ratio test and root test

  • Integral test for convergence

  • Power series notes

  • Taylor series notes

  • Fourier series 2π periodic functions

  • University exam maths notes

  • Convergence of sequences

Post a Comment

0 Comments