Engineering Mathematics Short Notes | Calulus – Functions of Single Variable | Limits, Continuity, Differentiability, MVT, Maxima–Minima, Integrals

ENGINEERING MATHEMATICS – FUNCTIONS OF SINGLE VARIABLE Short Notes (University And Gate Focus)

(Limit, Indeterminate Forms, L'Hospital, Continuity, Differentiability, MVT, Maxima–Minima, Taylor’s Theorem, Definite/Improper Integrals, Area & Volume)

Limits, Continuity, Differentiability, MVT, Maxima–Minima, Integrals


1. FUNCTIONS OF SINGLE VARIABLE – BASIC CONCEPTS

A function f:DRf: D \to \mathbb{R} assigns each value xDx \in D a unique real number f(x)f(x).
Key points:

  • Domain: set of allowable inputs

  • Range: set of outputs

  • Graph: visual representation y=f(x)y = f(x)

  • Types: polynomial, rational, trigonometric, logarithmic, exponential

Understanding behavior (limits, continuity, differentiability) is foundational for calculus.


2. LIMITS

A limit describes the value a function approaches as the input approaches some number.

2.1 Definition (ε–δ Not Required for Exam)

limxaf(x)=Lmeansf(x) approaches L as xa.\lim_{x\to a} f(x) = L \quad \text{means} \quad f(x) \text{ approaches } L \text{ as } x \to a.

2.2 Basic Limit Laws

lim(f+g)=limf+limg\lim (f+g) = \lim f + \lim g
lim(fg)=(limf)(limg)\lim (f \cdot g) = (\lim f)(\lim g)
limfg=limflimg(g0)\lim \frac{f}{g} = \frac{\lim f}{\lim g} \quad (g \neq 0)

2.3 Standard Limits (Important for GATE)

limx0sinxx=1\lim_{x\to 0} \frac{\sin x}{x} = 1
limx01cosxx2=12\lim_{x\to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} limx0(1+x)1/x=e\lim_{x\to 0} (1+x)^{1/x} = e
limx0tanxx=1\lim_{x\to 0} \frac{\tan x}{x} = 1
limx0ex1x=1\lim_{x\to 0} \frac{e^x - 1}{x} = 1
limx0ln(1+x)x=1\lim_{x\to 0} \frac{\ln(1 + x)}{x} = 1

3. INDETERMINATE FORMS

Forms where limit cannot be evaluated directly:

  • 00\frac{0}{0}

  • \frac{\infty}{\infty}

  • 00 \cdot \infty

  • \infty - \infty

  • 00,0,1

These require simplification or L'Hospital’s Rule.

4. L'HOSPITAL'S RULE

Used when limit gives 0/0 or ∞/∞:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x\to a}\frac{f(x)}{g(x)} = \lim_{x\to a}\frac{f'(x)}{g'(x)}

Apply repeatedly if form persists.

Examples

limx0sinxx=LHlimx0cosx1=1
limxlnxx=0\lim_{x\to \infty} \frac{\ln x}{x} = 0

5. CONTINUITY

A function is continuous at 

x=ax = a if:

  1. f(a)f(a) is defined

  2. limxaf(x)\lim_{x \to a} f(x)

  3. limxaf(x)=f(a)\lim_{x \to a} f(x) = f(a)

Types of Discontinuities

  • Removable

  • Jump

  • Infinite

  • Oscillatory

Continuity of Standard Functions

  • Polynomial, exponential, logarithmic → always continuous

  • Rational functions → continuous except where denominator = 0


6. DIFFERENTIABILITY

A function is differentiable at ( x=a ) if derivative exists:

f(a)=limh0f(a+h)f(a)h​

Important Results

  • Differentiability ⇒ Continuity

  • Continuity ≠ Differentiability
    (Example: |x| at x = 0)


7. MEAN VALUE THEOREMS

7.1 Rolle’s Theorem

If

  1. f is continuous on [a, b]

  2. f is differentiable on (a, b)

  3. f(a) = f(b)

Then ∃ c ∈ (a, b):

                                                              f(c)=0


7.2 Lagrange’s Mean Value Theorem (LMVT)

If f is continuous on [a, b] and differentiable on (a, b):

f(c)=f(b)f(a)baf'(c) = \frac{f(b)-f(a)}{b-a}

7.3 Cauchy Mean Value Theorem (CMVT)

For f and g satisfying LMVT conditions:

f(c)g(c)=f(b)f(a)g(b)g(a)​

8. MAXIMA & MINIMA

8.1 Critical Points

Solve:

f(x)=0

8.2 Second Derivative Test

If f(a)=0f'(a)=0:

  • f(a)>0 local minimum

  • f(a)<0 local maximum

  • f(a)=0 further tests required


9. TAYLOR’S THEOREM

For function f that is n-times differentiable:

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots

Special cases:

Taylor Series at x = 0 (Maclaurin Series)

  1. ex=1+x+x22!+e^x = 1 + x + \frac{x^2}{2!} + \cdots

  2. sinx=xx33!+x55!\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots

  3. cosx=1x22!+x44!

  4. ln(1+x)=xx22+x33


10. INTEGRALS

10.1 Fundamental Theorem of Calculus

If F is an antiderivative of f:

ddxaxf(t)dt=f(x)\frac{d}{dx} \int_a^x f(t)\,dt = f(x)
abf(x)dx=F(b)F(a)\int_a^b f(x)dx = F(b)-F(a)

11. MEAN VALUE THEOREM FOR INTEGRALS

There exists 

c[a,b]c \in [a,b]:

abf(x)dx=f(c)(ba)

12. DEFINITE INTEGRALS

Properties

  1. abf(x)dx=baf(x)dx\int_a^b f(x)dx = -\int_b^a f(x)dx

  2. abf(x)dx=acf(x)dx+cbf(x)dx\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx

  3. If f is even:

    aaf(x)dx=20af(x)dx\int_{-a}^{a} f(x)dx = 2\int_0^a f(x)dx
  4. If f is odd:

    aaf(x)dx=0


13. IMPROPER INTEGRALS

Two types:

(i) Infinite Limits

af(x)dx=limbabf(x)dx\int_a^\infty f(x)dx = \lim_{b\to \infty}\int_a^b f(x)dx

(ii) Infinite Discontinuity

abf(x)dx=limϵ0acϵ+c+ϵb\int_a^b f(x)dx = \lim_{\epsilon\to 0}\int_{a}^{c-\epsilon} + \int_{c+\epsilon}^{b}

14. APPLICATIONS OF DEFINITE INTEGRALS

14.1 Area Under Curve

A=abf(x)dxA = \int_a^b f(x) dx

Area between curves:

A=ab∣f(x)g(x)dxA = \int_a^b |f(x) - g(x)| dx

14.2 Area in Parametric Form

For x=f(t),y=g(t)x = f(t), y = g(t)

A=ydx=g(t)f(t)dtA = \int y \, dx = \int g(t)\,f'(t)\, dt

14.3 Area in Polar Form

A=12θ1θ2r2dθ

14.4 Volume of Solids of Revolution

(i) About x-axis (Disk Method)

V=πab[f(x)]2dxV = \pi \int_a^b [f(x)]^2 dx

(ii) About y-axis

V=πab[g(y)]2dyV = \pi \int_a^b [g(y)]^2 dy

(iii) Shell Method

V=2πabxf(x)dx

15. SOLVED EXAMPLES

Example 1: L'Hospital

limx0ln(1+x)x=1\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1

Example 2: Continuity

Check continuity of

f(x)=x24x2f(x) = \frac{x^2-4}{x-2}

After simplification:

f(x)=x+2, x2f(x) = x+2, \ x\neq 2

Removable discontinuity at x = 2.

Example 3: Maximum

f(x)=x33xf(x)=x^3 -3x
f(x)=3x23=3(x21)

Critical points: x = ±1.
Second derivative test gives max/min.

Example 4: Taylor Expansion

Expand exe^x about x=0 → standard series.

Example 5: Area

Find area between y=x2y = x^2 and x-axis from 0 to 2:

A=02x2dx=83​

16. SHORTCUTS FOR GATE

  • Convert indeterminate form → apply L'Hospital.

  • Even–odd property saves time in definite integrals.

  • Improper integrals often converge if:

    11xpdx converges if p>1
  • Taylor expansion used for limits and approximations.

  • Volumes → memorize disk & shell methods.

  • MVT rarely asked directly, but conceptual traps appear.


17. COMMON MISTAKES

  • Applying L'Hospital to non-indeterminate forms.

  • Confusing continuity with differentiability.

  • Forgetting absolute value when computing area between curves.

  • Ignoring convergence in improper integrals.

  • Using MVT without checking continuity/differentiability.


18. EXAM POINTERS

University Exams

  • Write definitions + conditions clearly.

  • Draw sketches for area/volume questions.

  • Show full steps for Taylor expansion.

GATE

  • Expect conceptual MCQs.

  • Use series expansion for tricky limits.

  • Volumes/areas often appear in applied contexts (physics-like).


Keywords

  • Functions of single variable notes

  • Engineering mathematics notes

  • GATE maths functions of single variable

  • Limits and continuity notes

  • Differentiability and mean value theorems

  • Taylor’s theorem notes

  • Maxima and minima short notes

  • Definite and improper integrals

  • Area and volume using integrals

  • University exam maths notes

Post a Comment

0 Comments