Percentage – Complete Short Notes for Competitive Exams


Percentage – Complete Short Notes for Competitive Exams

Percentage – Complete Short Notes for Competitive Exams

1. Basic Concept

  • “Per cent” means per hundred.

  • So, Percentage = (Value × 100) / Total value

  • Symbol: %

  • Percentage=PartWhole×100

Example:
If a student scored 40 marks out of 80:

(40/80)×100=50%


2. Conversion Rules

| Type                                   | Formula                          | Example    |
| --------------------------------| ----------------- ------------| ------------- |
| Fraction → %                    | (Fraction × 100)%          | 3/4 = 75%  |
| % → Fraction                    | % ÷ 100                          | 25% = 1/4  |
| Decimal → %                    | Decimal × 100               | 0.45 = 45% |
| % → Decimal                    | % ÷ 100                          | 35% = 0.35 |


3. Common Fraction–Percentage Equivalents

Fraction Percentage Fraction Percentage
1/2 50% 1/6 16.66%
1/3 33.33% 1/7 14.28%
1/4 25% 1/8 12.5%
1/5 20% 1/9 11.11%
1/10 10% 3/4 75%

Tip: Remember key fractions for faster mental calculations.


4. Important Formulas

  1. Percentage Value:

    Value=Percentage×Total100​
  2. Finding Total from Percentage:

    Total=Value×100Percentage​
  3. Increase or Decrease in Percentage:Change %=DifferenceOriginal value×100
  4. Resultant Change (Successive % Change):
    If a quantity increases by x% and then by y%,

    Net Change %=x+y+xy100​

    If one is increase and other is decrease,

    Net Change %=xyxy100

Example:
If a price increases by 20% and again by 10%,
Net = 20 + 10 + (20×10)/100 = 32% increase


5. Percentage Increase and Decrease

SituationFormulaExample
Increase from A to B                    BAA×100\frac{B - A}{A} × 10040→50 = 25% ↑
Decrease from A to BABA×100\frac{A - B}{A} × 10050→40 = 20% ↓

6. Reverse Percentage (Back Calculation)

Used when we are given increased or decreased value.

If a value increases by x%,

Original=New value×100100+x​

If a value decreases by x%,

Original=New value×100100x\text{Original} = \frac{\text{New value} × 100}{100 - x}

Example:
After a 20% rise, price = ₹240.
Original = (240×100)/120 = ₹200


7. Percentage Comparison

To find how many percent one number is of another:

Required %=FirstSecond×100\text{Required \%} = \frac{\text{First}}{\text{Second}} × 100

Example:
What % is 20 of 80? → (20/80)×100 = 25%


8. Percentage Change in Product

If one factor increases by x% and another by y%,

Total Change %=x+y+xy100​

Example:
If length ↑ 20% and breadth ↑ 10%,
Area ↑ = 20 + 10 + (20×10)/100 = 32%


9. Population Formula

If population grows at rate r% per year, after n years:

Pn=P(1+r100)nP_n = P \left(1 + \frac{r}{100}\right)^n

If it decreases at rate r% per year:

Pn=P(1r100)n

Example:
Current population = 10000, growth = 5% per year, 2 years later = 10000×(1.05)² = 11025


10. Profit, Loss, Discount (Linked Topics)

Concept Formula
Profit %  (Profit / Cost Price) × 100
Loss %                  (Loss / Cost Price) × 100
Discount % (Discount / Marked Price) × 100

11. Salary / Income Problems

If salary increases by x% and expenses by y%, and income changes accordingly,
use successive percentage formula to find net change in savings.

Example:
Income ↑ 20%, Expenses ↑ 10% ⇒ Net saving ↑ 8% approx.
(use formula for combined % change).


12. Examination Marks Problems

Let total marks = T, obtained = O, percentage = P%

O=P×T100​

If a student scores 30% and fails by 12 marks,
then 40% marks = passing marks →
10% = 12 ⇒ Total = 12 × 10 = 120 marks.


13. Relation Between Fraction and Percentage Change

Change Equivalent Fraction
1% 1/100
5% 1/20
10% 1/10
20% 1/5
25% 1/4
50% 1/2

Useful for fast mental math.


14. Tricks for Quick Solving

✅ To find “x% of y”, compute directly:

x% of y=x×y100 (Interchangeable: x% of y = y% of x)

✅ For 10%, divide by 10
✅ For 5%, divide by 20
✅ For 1%, divide by 100
✅ For 2%, divide by 50


15. Important Examples

  1. What % is 45 of 150?
    → (45/150)×100 = 30%

  2. If price ↑ 25% then ↓ 20%, net % change?
    = 25 - 20 - (25×20)/100 = -15% → 15% decrease

  3. A’s income is 25% more than B’s. Find how much % less is B’s income than A’s?
    Let B = 100 ⇒ A = 125
    Difference = 25 → (25/125)×100 = 20% less

  4. If number increases from 80 to 100, find % increase.
    = ((100−80)/80)×100 = 25% increase

  5. A’s marks = 80% of B. Find ratio A:B.
    = 80:100 = 4:5


16. Key Concept Relations

Concept Relation
% → Fraction → Ratio                               50% = 1/2 = 1:2
Fraction → % (1/n)×100
Increase x% then decrease x% Net = x2/100% decrease
Equal % increase/decrease Always results in decrease

17. Quick Practice Formula Table

Type                      Formula
% value                         (Value/Total)×100
Increase % ((New−Old)/Old)×100
Decrease % ((Old−New)/Old)×100
Successive % x + y + (xy/100)
Reverse % (New×100)/(100±x)
Population P(1±r/100)^n
% of % (x×y)/100

18. One-Line Summary

“Percentage means out of 100.
Convert easily between fractions, decimals & ratios.
Remember key formulas for change, comparison, and reverse calculation.”


19. Exam Revision Checklist

☑ Definition and conversion rules
☑ Formula for increase/decrease
☑ Successive % formula
☑ Reverse % formula
☑ Population growth/decay
☑ Fraction–% table
☑ Shortcut % calculations


In One Line:

“% compares part to whole — 100 base concept; master reverse %, successive %, and x% of y tricks.”


Focus Keywords:

percentage short notes, percentage formulas, percentage tricks, percentage notes for exam, competitive exam maths percentage, quick revision notes percentage


Post a Comment

0 Comments