Trigonometry – Complete Revision Notes
1 Basic Trigonometric Ratios
In a right-angled triangle with angle θ:
| Ratio | Definition | Formula |
|---|---|---|
| sin θ | Opposite / Hypotenuse | sin θ = P / H |
| cos θ | Adjacent / Hypotenuse | cos θ = B / H |
| tan θ | Opposite / Adjacent | tan θ = P / B |
| cot θ | 1 / tan θ | cot θ = B / P |
| sec θ | 1 / cos θ | sec θ = H / B |
| cosec θ | 1 / sin θ | cosec θ = H / P |
Remember:
👉 P = Perpendicular, B = Base, H = Hypotenuse
2 Reciprocal Identities
3 Quotient Identities
4 Pythagorean Identities
5 Trigonometric Values for Standard Angles
| θ | sin θ | cos θ | tan θ | cot θ | sec θ | cosec θ |
|---|---|---|---|---|---|---|
| 0° | 0 | 1 | 0 | ∞ | 1 | ∞ |
| 30° | 1/2 | √3/2 | 1/√3 | √3 | 2/√3 | 2 |
| 45° | 1/√2 | 1/√2 | 1 | 1 | √2 | √2 |
| 60° | √3/2 | 1/2 | √3 | 1/√3 | 2 | 2/√3 |
| 90° | 1 | 0 | ∞ | 0 | ∞ | 1 |
Memory Trick:
👉 sin = √(0/4), √(1/4), √(2/4), √(3/4), √(4/4) for 0°, 30°, 45°, 60°, 90° respectively.
6 Relation Between Angles
| Relation | Formula |
|---|---|
| Complementary Angles | sin(90° − θ) = cos θ, cos(90° − θ) = sin θ |
| tan(90° − θ) = cot θ, cot(90° − θ) = tan θ | |
| sec(90° − θ) = cosec θ, cosec(90° − θ) = sec θ |
7 Signs of Trig Ratios (Quadrants)
| Quadrant | sin | cos | tan |
|---|---|---|---|
| I (0°–90°) | + | + | + |
| II (90°–180°) | + | − | − |
| III (180°–270°) | − | − | + |
| IV (270°–360°) | − | + | − |
Trick:
👉 All Students Take Calculus
A – All positive
S – Sine positive
T – Tan positive
C – Cos positive
8 Trigonometric Ratios of (180° ± θ), (360° − θ)
| Angle Form | sin | cos | tan |
|---|---|---|---|
| sin(180° − θ) | +sin θ | ||
| sin(180° + θ) | −sin θ | ||
| cos(180° − θ) | −cos θ | ||
| cos(180° + θ) | −cos θ | ||
| tan(180° − θ) | −tan θ | ||
| tan(180° + θ) | +tan θ |
(Same for other multiples of 90° with sign changes based on quadrant.)
9 Sum and Difference Formulas
| Formula Type | Formula |
|---|---|
| sin(A ± B) | sinA cosB ± cosA sinB |
| cos(A ± B) | cosA cosB ∓ sinA sinB |
| tan(A ± B) | (tanA ± tanB) / (1 ∓ tanA tanB) |
10 Double Angle Formulas
11 Half Angle Formulas
12 Product to Sum and Sum to Product
| Formula | Equivalent Form |
|---|---|
| sinA sinB | ½[cos(A−B) − cos(A+B)] |
| cosA cosB | ½[cos(A−B) + cos(A+B)] |
| sinA cosB | ½[sin(A+B) + sin(A−B)] |
13 Trigonometric Equations
Commonly used results:
-
sin θ = sin α → θ = nπ + (−1)^n α
-
cos θ = cos α → θ = 2nπ ± α
-
tan θ = tan α → θ = nπ + α
14 Height and Distance Basics
Formulas:
Example:
If a tower 50 m high casts a shadow of 50√3 m,
tan θ = 50 / (50√3) = 1/√3 → θ = 30°
✅ Quick Memory Sheet
| Category | Key Formula |
|---|---|
| Reciprocal | sinθ = 1/cosecθ, cosθ = 1/secθ |
| Pythagorean | sin²θ + cos²θ = 1 |
| tan-cot | tanθ = sinθ/cosθ |
| Double Angle | sin2A = 2sinAcosA |
| Half Angle | tan(A/2) = sinA/(1+cosA) |
| Complementary | sin(90°−θ) = cosθ |
| Heights & Distances | tanθ = height/base |
💡 Tips for Exams
✅ Always convert given angles into standard forms (0°–90°).
✅ Remember ASTC sign rule.
✅ Simplify using sin² + cos² = 1 wherever possible.
✅ For quick questions, visualize triangle ratios.
✅ Practice standard values (30°, 45°, 60°).
%20(28).jpg)
Post a Comment