Trigonometry – Complete Revision Notes

Trigonometry – Complete Revision Notes

trigonometry short notes


1 Basic Trigonometric Ratios

In a right-angled triangle with angle θ:

Ratio Definition Formula
sin θ Opposite / Hypotenuse sin θ = P / H
cos θ Adjacent / Hypotenuse cos θ = B / H
tan θ Opposite / Adjacent tan θ = P / B
cot θ 1 / tan θ cot θ = B / P
sec θ 1 / cos θ sec θ = H / B
cosec θ 1 / sin θ cosec θ = H / P

Remember:
👉 P = Perpendicular, B = Base, H = Hypotenuse


2 Reciprocal Identities

sinθ=1cscθ,cosθ=1secθ,tanθ=1cotθ\sin θ = \frac{1}{\csc θ}, \quad \cos θ = \frac{1}{\sec θ}, \quad \tan θ = \frac{1}{\cot θ} cscθ=1sinθ,secθ=1cosθ,cotθ=1tanθ\csc θ = \frac{1}{\sin θ}, \quad \sec θ = \frac{1}{\cos θ}, \quad \cot θ = \frac{1}{\tan θ}

3 Quotient Identities

tanθ=sinθcosθ,cotθ=cosθsinθ\tan θ = \frac{\sin θ}{\cos θ}, \quad \cot θ = \frac{\cos θ}{\sin θ}

4 Pythagorean Identities

sin2θ+cos2θ=1\sin^2 θ + \cos^2 θ = 1
1+tan2θ=sec2θ1 + \tan^2 θ = \sec^2 θ
1+cot2θ=csc2θ1 + \cot^2 θ = \csc^2 θ

5 Trigonometric Values for Standard Angles

θ sin θ cos θ tan θ cot θ sec θ cosec θ
0 1 0 1
30° 1/2 √3/2 1/√3 √3 2/√3 2
45° 1/√2 1/√2 1 1 √2 √2
60° √3/2 1/2 √3 1/√3 2 2/√3
90° 1 0 0 1

Memory Trick:
👉 sin = √(0/4), √(1/4), √(2/4), √(3/4), √(4/4) for 0°, 30°, 45°, 60°, 90° respectively.


6 Relation Between Angles

Relation Formula
Complementary Angles sin(90° − θ) = cos θ, cos(90° − θ) = sin θ
tan(90° − θ) = cot θ, cot(90° − θ) = tan θ
sec(90° − θ) = cosec θ, cosec(90° − θ) = sec θ

7 Signs of Trig Ratios (Quadrants)

Quadrant sin cos tan
I (0°–90°) + + +
II (90°–180°) +
III (180°–270°) +
IV (270°–360°) +

Trick:
👉 All Students Take Calculus
A – All positive
S – Sine positive
T – Tan positive
C – Cos positive


8 Trigonometric Ratios of (180° ± θ), (360° − θ)

Angle Form sin cos tan
sin(180° − θ) +sin θ
sin(180° + θ) −sin θ
cos(180° − θ) −cos θ
cos(180° + θ) −cos θ
tan(180° − θ) −tan θ
tan(180° + θ) +tan θ

(Same for other multiples of 90° with sign changes based on quadrant.)


9 Sum and Difference Formulas

Formula Type Formula
sin(A ± B) sinA cosB ± cosA sinB
cos(A ± B) cosA cosB ∓ sinA sinB
tan(A ± B) (tanA ± tanB) / (1 ∓ tanA tanB)

10 Double Angle Formulas

sin2A=2sinAcosA\sin 2A = 2\sin A \cos A
cos2A=cos2Asin2A=12sin2A=2cos2A1\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A = 2\cos^2 A - 1
tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}

11 Half Angle Formulas

sin2A2=1cosA2\sin^2 \frac{A}{2} = \frac{1 - \cos A}{2} cos2A2=1+cosA2\cos^2 \frac{A}{2} = \frac{1 + \cos A}{2} tanA2=sinA1+cosA=1cosAsinA\tan \frac{A}{2} = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A}

12 Product to Sum and Sum to Product

Formula Equivalent Form
sinA sinB           ½[cos(A−B) − cos(A+B)]
cosA cosB           ½[cos(A−B) + cos(A+B)]
sinA cosB           ½[sin(A+B) + sin(A−B)]

13 Trigonometric Equations

Commonly used results:

  • sin θ = sin α → θ = nπ + (−1)^n α

  • cos θ = cos α → θ = 2nπ ± α

  • tan θ = tan α → θ = nπ + α


14 Height and Distance Basics

Formulas:

tanθ=HeightDistance\tan θ = \frac{\text{Height}}{\text{Distance}} cotθ=DistanceHeight\cot θ = \frac{\text{Distance}}{\text{Height}}

Example:

If a tower 50 m high casts a shadow of 50√3 m,
tan θ = 50 / (50√3) = 1/√3 → θ = 30°


 Quick Memory Sheet

Category Key Formula
Reciprocal sinθ = 1/cosecθ, cosθ = 1/secθ
Pythagorean sin²θ + cos²θ = 1
tan-cot tanθ = sinθ/cosθ
Double Angle sin2A = 2sinAcosA
Half Angle tan(A/2) = sinA/(1+cosA)
Complementary sin(90°−θ) = cosθ
Heights & Distances tanθ = height/base

💡 Tips for Exams

✅ Always convert given angles into standard forms (0°–90°).
✅ Remember ASTC sign rule.
✅ Simplify using sin² + cos² = 1 wherever possible.
✅ For quick questions, visualize triangle ratios.
✅ Practice standard values (30°, 45°, 60°).

Post a Comment

Previous Post Next Post