Engineering Mathematics Short Notes | Vector Calculus: Gradient, Divergence, Curl, Line Integrals & Green’s Theorem

VECTOR CALCULUS – COMPLETE NOTES (ENGINEERING MATHEMATICS) for GATE and University Exams

Vector Calculus: Gradient, Divergence, Curl, Line Integrals & Green’s Theorem


1. Introduction to Vector Calculus

Vector calculus deals with differentiation and integration of vector-valued functions. It is extensively used in:

  • Fluid mechanics

  • Electromagnetic field theory

  • Heat transfer

  • Robotics and control

  • Computer graphics

  • Optimization problems

The fundamental operators in vector calculus are:

  • Gradient (∇f)

  • Divergence (∇·F)

  • Curl (∇×F)

  • Laplacian (∇²f) (used in PDEs)

The base operator is the del operator:

=i^x+j^y+k^z

This operator acts differently depending on whether it is applied to a scalar or a vector field.


2. Gradient (grad)

Definition

For a scalar function 

f(x,y,z)f(x, y, z) the gradient is:

f=i^fx+j^fy+k^fz​

The gradient gives a vector field.

Interpretation

  • Points in the direction of maximum increase of the function.

  • Magnitude gives maximum rate of change.

Key Properties

  1. Directional derivative in direction of unit 

  2. vector u^\hat{u}:

  3. Du^f=fu^
  1. Gradient is perpendicular to level surfaces
    For scalar field 

    f(x,y,z)=cf(x,y,z) = c, the normal direction is f\nabla f.
  2. If gradient is zero, function is constant.


Example

Let

f=x2+y2+z2f = x^2 + y^2 + z^2
f=(2x)i^+(2y)j^+(2z)k^\nabla f = (2x)\hat{i} + (2y)\hat{j} + (2z)\hat{k}

Gradient points radially outward from origin.


3. Divergence (div)

Definition

For a vector field

F=Fxi^+Fyj^+Fzk^

the divergence is:

F=Fxx+Fyy+Fzz\nabla\cdot\mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}gIt gives a scalar.

Physical Meaning

Divergence measures net outward flux of a vector field (like fluid flow).

  • Positive divergence → source region

  • Negative divergence → sink region

  • Zero divergence → incompressible flow / solenoidal field


Example

F=x2i^+y2j^+z2k^\mathbf{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}
F=2x+2y+2z


4. Curl (rot)

Definition

For a vector field 

F\mathbf{F}:

×F=i^j^k^xyzFxFyFz

It gives a vector.


Physical Meaning

Curl measures the rotational tendency of a vector field.

  • Zero curl → irrotational field

  • If ×F=0, the field is gradient of some scalar potential.

Example

F=yzi^+zxj^+xyk^\mathbf{F}=yz\hat{i}+zx\hat{j}+xy\hat{k}
×F=(xx)i^+(yy)j^+(zz)k^=0

So field is irrotational.


5. Important Vector Identities (Very Important for GATE)

(×F)=0\nabla\cdot(\nabla\times\mathbf{F}) = 0
×(f)=0\nabla\times(\nabla f) = 0
(fF)=f(F)+F(f)\nabla\cdot(f\mathbf{F}) = f(\nabla\cdot\mathbf{F}) + \mathbf{F}\cdot(\nabla f)
×(fF)=f(×F)+(f)×F\nabla\times(f\mathbf{F}) = f(\nabla\times \mathbf{F}) + (\nabla f)\times\mathbf{F}
(fg)=fg+gf

Laplacian

2f=(f)

6. Line Integrals

Let F=Pi^+Qj^+Rk^\mathbf{F} = P\hat{i} + Q\hat{j} + R\hat{k}
Line integral along curve CC:

CFdr=CPdx+Qdy+Rdz

Interpretation

  • Work done by force field

  • Circulation of a vector field

  • Used in electromagnetics


Properties

  1. Path dependent unless field is 

  2. conservative.

  3. If ×F=0\nabla \times F = 0, then:

  4. CFdr=ϕ(B)ϕ(A)\int_C F\cdot dr = \phi(B)-\phi(A)
    1. For closed curve (C is closed):

    CFdr

represents total circulation.


Example

Find

C(xdx+ydy)

from (0,0)(0,0) to (1,1)(1,1) along straight line.

Parametrize:

x=t,y=t,0t1x=t,\,y=t,\, 0\le t\le 1
dx=dt,dy=dtdx=dt,\,dy=dt
01tdt+tdt=201tdt=1


7. Green’s Theorem in Plane

Statement

For continuously differentiable P and Q:

C(Pdx+Qdy)=R(QyPx)dA

Where:

  • C = positively oriented (counter-clockwise) boundary curve

  • R = region enclosed by C


Interpretation

Converts:

  • A line integral → area (double) integral

This is extremely important in GATE (2–4 marks frequently).


Useful Form

Cxdy=R1dA=Area(R)\oint_C x\,dy = \iint_R 1\,dA = \text{Area(R)}
Cydx=Area(R)\oint_C -y\,dx = \text{Area(R)}

Example

Evaluate

C(x2y2)dx+(xy)dy

Using Green’s Theorem:

R(y(xy)x(x2y2))dA\iint_R \left(\frac{\partial}{\partial y}(xy)-\frac{\partial}{\partial x}(x^2-y^2)\right)\,dA=R(x2x)dA=R(x)dA

For a symmetric region around y-axis → integral = 0.


8. More Examples

Example – Gradient

f=xyezf=(yez)i^+(xez)j^+(xyez)k^

Example – Divergence

F=(3x2+y)i^+(x+4y)j^F = (3x^2 + y)\hat{i} + (x + 4y)\hat{j} F=6x+4\nabla \cdot F = 6x + 4

Example – Curl

F=(y,z,x)F = (y, z, x)
×F=(10)i^+(01)j^+(11)k^=(1,1,0)\nabla\times F = (1-0)\hat{i} + (0-1)\hat{j} + (1-1)\hat{k} = (1, -1, 0)

Example – Green’s Theorem

Find

C(2xy)dx+(x+3y)dy\oint_C (2x-y)dx + (x+3y)dy
=R(32)dA=R1dA=Area(R)

9. Common GATE Question Types

Type 1: Find divergence/curl

Most frequent.

Type 2: Conservative vector fields

Condition:

×F=0

Type 3: Integration using Green’s theorem

Type 4: Work done by a force field

Type 5: Verify identities


10. Common Mistakes to Avoid

  1. Mixing up scalar and vector results (div gives scalar, curl gives vector).

  2. Wrong order in determinant while computing curl.

  3. Forgetting counter-clockwise orientation for Green’s Theorem.

  4. Misapplying line integral parameterization.

  5. Not checking boundary conditions.


11. Short Revision Table

Concept Operator Output Meaning
Gradient f Vector     Maximum rate of change
Divergence F Scalar     Outflow of field
Curl ×F Vector     Rotation of field
Line Integral                CFdr Scalar     Work done
Green’s Theorem Pdx+Qdy=(Q/yP/x)                    Area relation


12. Final Summary (Exam-Ready)

  • Gradient gives direction of steepest ascent.

  • Divergence gives source/sink strength.

  • Curl gives rotation of field.

  • Line integrals measure work, circulation, or flux along a curve.

  • Green’s theorem converts line integral → double integral.

  • Vector identity formulas are extremely important for GATE.

  • Conservative fields have zero curl.

  • Area can be computed using:

xdy=Area

Post a Comment

0 Comments