Vectors Short Notes for Engineering Entrance Exams | Definitions & Formulas

VECTORS — SHORT NOTES

VECTORS — SHORT NOTES (EXAM POINT OF VIEW)


1. Basics of Vectors

Scalar: Quantity with only magnitude

Examples → mass, time, speed, temperature.

Vector: Quantity with magnitude and direction

Examples → displacement, velocity, acceleration, force, momentum.

Representation:

A=Axi^+Ayj^+Azk^

2. Types of Vectors

  • Unit vector:

    A^=AA\hat{A} = \frac{\vec{A}}{|\vec{A}|}
  • Null/Zero vector → magnitude 0

  • Equal vectors → same magnitude & direction

  • Collinear / Parallel vectors

  • Negative vectors → opposite directions

  • Coplanar vectors → lie in same plane


3. Magnitude of a Vector

A=Ax2+Ay2+Az2

4. Addition & Subtraction

Parallelogram law:

R=A+B\vec{R} = \vec{A} + \vec{B}
R=A2+B2+2ABcosθ

Triangle law:

A+B=C

Subtraction:

AB=A+(B)

5. Scalar (Dot) Product

AB=ABcosθ\vec{A} \cdot \vec{B} = AB\cos\theta

Useful results:

  • If A ⊥ B → dot product = 0

  • Work done = Fs\vec{F} \cdot \vec{s}

  • In component form:

AB=AxBx+AyBy+AzBz​

6. Vector (Cross) Product

A×B=ABsinθ n^

(where (\hat{n}) = unit vector perpendicular to plane)

Important:

  • If A ∥ B → cross product = 0

  • Torque,

  • T= r×F\vec{r} \times \vec{F}

  • Area of parallelogram = |A × B|
  • Area of triangle = ½ |A × B|


7. Scalar Triple Product (STP)

A(B×C)
  • Represents volume of a parallelepiped.

  • If STP = 0 → vectors are coplanar.


8. Vector Triple Product

A×(B×C)=(AC)B(AB)C

9. Direction Cosines & Direction Ratios

Direction cosines (l, m, n):

l=AxA,m=AyA,n=AzAl2+m2+n2=1l^2 + m^2 + n^2 = 1


Direction ratios:

Numbers proportional to the components of the vector.


10. Position Vector & Displacement Vector

  • Position vector of point P(x, y, z):

OP=xi^+yj^+zk^\vec{OP} = x\hat{i} + y\hat{j} + z\hat{k}
  • Displacement from A(x₁, y₁, z₁) to B(x₂, y₂, z₂):

AB=(x2x1)i^+(y2y1)j^+(z2z1)k^\vec{AB} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}


11. Important Identities

  • i^×j^=k^\hat{i} \times \hat{j} = \hat{k}

  • ^×k^=i^\hat{j} \times \hat{k} = \hat{i}

  • k^×i^=j^\hat{k} \times \hat{i} = \hat{j}

  • i^j^=j^k^=k^i^=0

  • i^i^=j^j^=k^k^=1

12. Common Exam Questions

  1. Given vectors, find magnitude, unit vector.

  2. Direction cosines, projection of a vector.

  3. Dot/cross product numerical.

  4. Find area using |A × B|.

  5. Volume using triple product.

  6. Condition for collinearity / coplanarity.

Post a Comment

0 Comments