Simplification & Approximation – Complete Short Notes
1. Basics of Simplification
-
Simplification involves solving arithmetic expressions using BODMAS / PEMDAS rules:
B – Brackets → (), {}, []
O – Orders → powers, roots
D – Division
M – Multiplication
A – Addition
S – Subtraction -
Order of operations matters:
Step 1: Brackets →
Step 2: Division/Multiplication → ,
Step 3: Addition →
2. Important Rules / Shortcuts
A. Fractions
-
Combine fractions before operations:
B. Decimal Approximation
-
Round decimals for quick calculation:
-
3.141 ≈ 3.14
-
6.278 ≈ 6.28
-
-
Use 2 decimal places for exam-level speed unless specified
C. Square Roots / Cube Roots
-
Approximate square roots between nearest perfect squares
-
Example: ple: ≈ 7.07)
-
-
Cube roots similarly between nearest perfect cubes
D. Percentage / Fraction Shortcuts
-
Convert % → decimal → approximate: 18% ≈ 0.18
-
Fractions → nearest decimal: (7/8 ≈ 0.875 ≈ 0.88)
3. Common Simplification Techniques
-
Eliminate brackets:
(a+b) + (c-d) = a+b+c-d -
Use squares/cubes:
-
Factorization:
-
Example: (12×25 = 3×4×25 = 3×100 = 300)
-
Use reciprocal / inversion for division:
a b ÷ c d = a b × d c \frac{a}{b} ÷ \frac{c}{d} = \frac{a}{b} × \frac{d}{c} -
Combine like terms in addition/subtraction
-
Round-off for approximation:
-
Example: (198 × 502 ≈ 200 × 500 = 100,000)
4. Approximation Methods
A. Rounding Off
-
Round numbers to nearest 10, 100, or decimal place depending on question
B. Estimation by Fraction
-
Replace fractions with nearest decimals or simple fractions for faster calculation
-
Example: (7/9 ≈ 0.78 ≈ 0.8)
C. Significant Figures
-
Keep 2 or 3 significant figures for estimation questions
D. Compatible Numbers
-
Adjust numbers to nearest compatible numbers for easy mental calculation:
-
Example: (398 ÷ 19 ≈ 400 ÷ 20 = 20)
-
5. Tricks for Competitive Exams
-
Multiplication:
-
Use factor pairs: 98×102=(100−2)(100+2)=10000−4=9996
-
Division:
-
Convert divisors close to 10, 100, 1000 for easy mental math
-
Addition / Subtraction:
-
Group numbers to nearest tens/ hundreds
-
Example: 297+416 → 300+413=713
-
Square Roots Approximation
-
105 ≈ 10 + ( 105 − 100 ) / ( 2 × 10 ) = 10 + 5 / 20 = 10.25 \sqrt{105} ≈ 10 + (105-100)/(2×10) = 10 + 5/20 = 10.25
-
-
Cube Roots Approximation:
-
216 3 = 6 (perfect cube) -
220 3 ≈ 6 + ( 220 − 216 ) / ( 3 × 6 2 ) = 6 + 4 / 108 ≈ 6.037 \sqrt[3]{220} ≈ 6 + (220-216)/(3×6^2) = 6 + 4/108 ≈ 6.037
6. Examples for Practice
Simplify:
25 × 32 ÷ 8 + 12 2 ÷ 6 25 × 32 ÷ 8 + 12^2 ÷ 6 -
Step 1:
25 × 32 ÷ 8 = 25 × 4 = 100 25×32 ÷ 8 = 25×4=100 -
Step 2:
12 2 ÷ 6 = 144 ÷ 6 = 24 12^2 ÷6=144÷6=24 -
Step 3:
100 + 24 = 124 100+24=124 -
Approximate:
198 × 49 ÷ 7 198 × 49 ÷ 7 -
Step 1: Round →
200 × 50 ÷ 7 ≈ 10 , 000 ÷ 7 ≈ 1428.57 ≈ 1430 200 × 50 ÷ 7 ≈ 10,000 ÷7 ≈ 1428.57 ≈ 1430 -
Simplify:
( 75 × 16 ) − ( 24 × 50 ) (75×16)-(24×50) -
,75 × 16 = 1200 75×16 = 1200 → Result = 024 × 50 = 1200 24×50 =1200 -
Approximate:
1025 ≈ ? \sqrt{1025} ≈ ? -
Nearest perfect square:
→32 2 = 1024 32^2=1024 1025 ≈ 32.015 =32
7. One-Liner Formulas / Tricks
-
BODMAS: Brackets → Orders → Division → Multiplication → Addition → Subtraction
-
Square root ≈ nearest perfect square + fractional adjustment
-
Cube root ≈ nearest cube + adjustment using formula
8. Exam Day Tips
-
Always follow BODMAS
-
Use rounding / estimation for quick calculation
-
Convert fractions to decimals if easier
-
Memorize square & cube tables for simplification
-
Use factorization for multiplication/division shortcuts
✅ Quick Revision Checklist:
-
BODMAS rules
-
Square & cube formulas
-
Fraction → decimal conversion
-
Rounding and estimation
-
Mental math tricks for multiplication/division
-
Approximation for roots & powers
%20(12).jpg)
Post a Comment