Engineering Mathematics Short Notes | Functions of Two Variables – Limits, Continuity, Partial Derivatives, Lagrange Multipliers, Double Integrals

ENGINEERING MATHEMATICS – FUNCTIONS OF TWO VARIABLES

(Complete Short Notes Limit, continuity and partial derivatives; Directional derivative; Total derivative; Maxima, minima and saddle points; Method of Lagrange multipliers; Double integrals and their applications for University Exams & GATE)

Functions of two variables notes  Engineering mathematics multivariable calculus  GATE maths functions of two variables  Partial derivatives and continuity  Directional derivative formula  Total derivative notes  Lagrange multipliers method  Double integrals applications  Maxima minima saddle points  University exam calculus notes


1. INTRODUCTION

A function of two variables is a rule that assigns to each ordered pair 

(x,y)(x, y) in a domain DR2D \subset \mathbb{R}^2 a real number zz.

z=f(x,y)z = f(x, y)

Examples: z=x2+y2z = x^2 + y^2, z=exyz = e^{xy}, z=sin(x+y)z = \sin(x + y)

Such functions appear in Engineering fields like Heat Transfer, Fluid Mechanics, Optimization, Machine Learning, and Control Systems.


2. LIMIT OF A FUNCTION OF TWO VARIABLES

2.1 Definition

A function 

f(x,y)f(x, y) has limit  at (a,b)(a, b)if

lim(x,y)(a,b)f(x,y)=L\lim_{(x,y)\to(a,b)} f(x,y) = L

whenever (x,y)(x, y) approaches (a,b)(a, b) along any path.

2.2 Why limits of two variables are harder?

Because in 2D, infinitely many paths approach a point:

  1. Straight line: y=mx

  2. Parabola: y=kx2y = kx^2

  3. Curve: x=tcost,y=tsintx = t\cos t, y = t\sin t etc.

If limit differs along different paths, limit does not exist.

2.3 Standard results

(i)

lim(x,y)(0,0)x2+y2x2+y2+1=0

(ii) Limits typically fail if numerator/denominator mix non-homogeneous polynomials.


2.4 Method of Checking Limit

  1. Substitute 

straight-line path y=mx
  1. Try parabolic path y=kx2y = kx^2

  2. Convert to polar form:

  3. x=rcosθ,y=rsinθ

    If limit is independent of
    \theta
    , limit exists.


2.5 Solved Example (GATE Type)

Example:
Evaluate

lim(x,y)(0,0)x2yx4+y2.

Solution:
Take path y=x2y = x^2:

f(x,x2)=x2(x2)x4+x4=x42x4=12f(x, x^2) = \frac{x^2(x^2)}{x^4 + x^4} = \frac{x^4}{2x^4} = \frac12

Take path y=0y = 0:

f(x,0)=0f(x,0)=0

Limits differ → limit does not exist.


3. CONTINUITY OF TWO VARIABLE FUNCTIONS

Definition

f(x,y)f(x, y) is continuous at (a,b)(a, b) if:

  1. f(a,b)f(a, b) exists

  2. limf(x,y)\lim f(x, y) exists

  3. Limit equals value

lim(x,y)(a,b)f(x,y)=f(a,b)

Discontinuity occurs when:

  1. Undefined at point

  2. Limit does not exist

  3. Limit exists but differs from value


4. PARTIAL DERIVATIVES

Definition

Partial derivative w.r.t. xx:

fx=limh0f(x+h,y)f(x,y)h

Partial derivative w.r.t. yy:

fy=limk0f(x,y+k)f(x,y)k

4.1 Higher-order partials

fxx=2fx2,fxy=2fxy,fyx=2fyx​

Clairaut’s Theorem

If ff is continuous near (a,b)(a,b):

fxy=fyxf_{xy} = f_{yx}

4.2 Solved Example

Find partial derivatives of:

f(x,y)=x2y+exyf(x,y)=x^2y+e^{xy}
fx=2xy+yexyf_x = 2xy + ye^{xy}
fy=x2+xexy

5. DIRECTIONAL DERIVATIVE

Definition

Directional derivative in direction 

u=u1,u2\mathbf{u} = \langle u_1, u_2\rangle is:

Duf=fxu1+fyu2D_{\mathbf{u}}f = f_x u_1 + f_y u_2

Direction vector must be unit:

u=aa

Geometric Meaning

Directional derivative gives the rate of change of a surface z=f(x,y) in any direction.


Solved Example

For 

f(x,y)=x2y, find directional derivative at (1,2)(1,2) in direction of a=3,4\mathbf{a} = \langle 3,4\rangle.

  1. Normalize:

u=15(3,4)
  1. Compute partials:

fx=2xy=4f_x = 2xy = 4
fy=x2=1
  1. Directional derivative:

Duf=435+145=165D_{\mathbf{u}}f = 4\cdot\frac35 + 1\cdot\frac45 = \frac{16}{5}

6. TOTAL DERIVATIVE

If

z=f(x,y),x=x(t),y=y(t)

then

dzdt=fxdxdt+fydydt\frac{dz}{dt} = f_x\frac{dx}{dt} + f_y\frac{dy}{dt}

This is used in:

  • Thermodynamics

  • Control theory

  • Transport equations


7. EXTREMA OF FUNCTIONS OF TWO VARIABLES

(Local maxima, minima, saddle points)


7.1 First-Order Condition

At extremum:

fx=0,fy=0

7.2 Second-Order Condition

Compute:

D=fxxfyy(fxy)2

Check:

Condition Nature
(D > 0) and fxx > 0)      Local Minimum
(D > 0) and fxx < 0)      Local Maximum
(D < 0)      Saddle Point
(D = 0)      Test Fails

7.3 Example (GATE Level)

Let

f(x,y)=x2+xy+y2

Compute partials:

fx=2x+y=0f_x = 2x + y = 0
fy=x+2y=0

Solving pair:

x=y=0x=y=0

Second-order test:

fxx=2,fyy=2,fxy=1f_{xx}=2,\quad f_{yy}=2,\quad f_{xy}=1
D=(2)(2)12=3>0,fxx>0

∴ Local Minimum at (0,0)


8. LAGRANGE MULTIPLIERS

Used to find maxima/minima subject to constraint

g(x,y)=0g(x,y)=0.

Rule

Solve:

f=λg\nabla f = \lambda \nabla g
g(x,y)=0

Example (University Level)

Maximize

f(x,y)=xy

subject to

x2+y2=1

  1. Compute:

f=(y,x)\nabla f = (y,x)
g=(2x,2y)

  1. Set:

(y,x)=λ(2x,2y)

Solve system →

x=±12,y=±12

Maximum value:

f=12f = \frac12

Minimum:

f=12


9. DOUBLE INTEGRALS

Used to compute:

  1. Area

  2. Volume under a surface

  3. Mass (variable density)

  4. Probability distributions


9.1 Definition

Rf(x,y)dA

9.2 Iterated Form

abg1(x)g2(x)f(x,y)dydx

or

cdh1(y)h2(y)f(x,y)dxdy\int_{c}^{d}\int_{h_1(y)}^{h_2(y)} f(x,y)\,dx\,dy

10. APPLICATIONS OF DOUBLE INTEGRALS


10.1 Area of a Region

A=R1dA

10.2 Volume under a surface

V=Rf(x,y)dA

10.3 Solved Example

Evaluate

R(x+y)dA

over region 0x10\le x\le1, 0y20\le y\le2.

Solution:

0102(x+y)dydx\int_0^1\int_0^2 (x+y)\,dy\,dx

Inner integral:

02(x+y)dy=2x+2\int_0^2 (x+y)\, dy = 2x + 2

Then:

01(2x+2)dx=[x2+2x]01=1+2=3

12. EXAM TIPS (UNIVERSITY + GATE)

High-Weightage Concepts

✔ Limits using polar substitution
✔ Directional derivative formula
✔ Lagrange multipliers
✔ Double integral region transformation
✔ Classification of critical points using Hessian
✔ Changing the order of integration

Common Mistakes

❌ Forgetting to normalize direction vectors
❌ Using wrong region limits in double integrals
❌ Incorrectly identifying saddle points
❌ Assuming limit exists without checking multiple paths


13. SUPER QUICK SHORT NOTES (FOR LAST-DAY REVISION)

  1. Limit exists ↔ Same value along all paths

  2. Partial derivatives treat other variables as constant

  3. Directional derivative = ∇f · unit vector

  4. Extrema: solve fx=0,fy=0f_x=0, f_y=0 → apply Hessian test

  5. Lagrange multipliers: ∇f = λ∇g

  6. Double integrals compute area/volume


SEO KEYWORDS

  1. Functions of two variables notes

  2. Engineering mathematics multivariable calculus

  3. GATE maths functions of two variables

  4. Partial derivatives and continuity

  5. Directional derivative formula

  6. Total derivative notes

  7. Lagrange multipliers method

  8. Double integrals applications

  9. Maxima minima saddle points

  10. University exam calculus notes

Post a Comment

0 Comments